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Perturbing general uncorrelated networks
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This paper is a direct continuation of an earlier work, where we studied Erdds-Rényi random graphs
perturbed by an interaction Hamiltonian favoring the formation of short cycles. Here, we generalize these
results. We keep the same interaction Hamiltonian but let it act on general graphs with uncorrelated nodes and
an arbitrary given degree distribution. It is shown that the results obtained for Erdés-Rényi graphs are generic,
at the qualitative level. However, scale-free graphs are an exception to this general rule and exhibit a singular
behavior, studied thoroughly in this paper, both analytically and numerically.
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I. INTRODUCTION In the Erdds-Rényi theory, there is a very natural and simple

. recipe for the weight. Hence, in Ref4], we were grand
The best understood random graphs are those with Uncog,nonical. Here, we find it more elegant to keep the number

related nodes and a local tree structure. It was natural tg¢ |inks fixed. Notice, that we are interested in the lalge
develop the statistical mechanics of random networks starfs,it where, for any reasonable choice of the weighstays

ing with this highly idealized picture, as it is natural to begin ¢|se 19 jts average value as a consequence of the constraint
explaining the properties of gases starting with the idea| -1 /25 k and of the central limit theorem.

ones. However, short loops show up in most real networks A< i’ Ref. [4, we set for definitenessS(M)

relatively frequently and it is evident that current models_G/3| Tr(M3). Expanding the exponential in E€L), we ob-

should be upgraded to capture th|§ common {ghi¢ present ain a perturbative series representing the partition function.
state of art in network research is excellently reviewed i

Mhis perturbative representation was thoroughly studied in

EEfS'.lEl_.g])' Atposs]lcble s_trattehgy consists in afddlng .]E.O the Ref. [4] and the analytic arguments were completed by nu-
ramptonian a term favoring the appearance ot Specilic Mo, q a1 simulations. Let us recall the salient conclusions of
tifs. This strategy was adopted in our recent publicafijn this study

where Erdos-Rényi graphs were perturbed by adding to the We have introduced a diagrammatic representation of pos-

action a term proportional to th? numbe( of tnang]ﬁls The sible contributions to the perturbative expansion, reminiscent
purpose of the present paper is to outline a possible 9eneg; Feynman diagrams used in field theory. Each diagram is a

a(lalfgttfl]ogrg(faljd:lfe]edlsr(;uisslobneI(())]:']Ri[;q(htg st?aefc'gtacsg ;vr?seerrem;?e specific subgraph of the full random graph. We have shown
z grap 9 ISt at the number of contributing diagrams grows factorially

simple (i.e., nondegeneratgraphs with uncorrelated nodes with the order of the perturbation theory.

an?_r?narbn'rgry Segrge dlitubutlomk.b d model | . . As is well known, such a factorial growth of the number
the foemr:artltlon unction of the perturbed model is written in of diagrams signals a breakdown of the perturbation theory.
Indeed, our numerical simulations indicate the presence of a
N transition from a smooth perturbative regime to a crumpled
Z=> &(Tr(M?) - 2L)eSM]] (ki) =75y (1) phase, wr_u_are aIr_nost all nodes fc_>rm a complete clifgle
M =1 ) The transition poinG,,(N) scales like IlN. The two phases
are separated by a “barrier” which becomes impenetrable
whereN andL are the number of nodes and links, respecyhenN— co.
tively, the sum is over adjacency matrices Rylis the degree Remarkably enough, it is possible to sum up the leading
of the jth node satisfying TiM?) =2;k;, andS(M) is the per-  diagrams, i.e., those whose contribution survives in the limit
turbing Hamiltonian. Settin§(M)=0, one obtains a standard N— . Thus, for example, we have been able to derive a
model of networks with uncorrelated nodes and the degreelosed analytic expression for the average number of tri-
distribution p, (provided the relationzkp/Zp=2L/N angles. It turns out, that at large enougtthis analytic for-
holds, see for example Ref§,7]). In the second line, we mula is a very good approximation in the almost whole re-
denote by(:--) the average taken in the unperturbed en-gion G<G,(N). SettingG=G,In N<G,,(N), one obtains
semble and thereforg, is, obviously, the partition function a network model with a nontrivially behaving clustering co-
of the unperturbed model, in our context an irrelevant overalefficient C< N1, This clustering coefficient is never con-
factor (it can be calculated analytically in the largelimit, stant, it falls to zero abl— o, but this fall can be made fairly
see, e.0.[6], but we do not need this result hgre slow by a proper choice d,,.
One can, of course, go over from E¢l) to a grand- The results summarized above are the starting point of the
canonical ensemble, with fluctuating multiplying Eqg. (1) present paper, which is a direct continuation of Réf. In
by an appropriaté.-dependent weight and summing oler  Sec. Il, we extend our diagrammatic rules to general uncor-
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related graphs with a given degree distribution. We also KoK

show that the results of Ref4] continue to hold, only Proh(a,b) = N’ 3

slightly modified, in this generalized setup. The so-called

scale-free graphs are the only exception to the generic bevhere k, (k,) is the degree ofath (bth) node and(k)

havior and require a separate discussion, presented in Seey, i, /3, p,. Notice that(k)N equals the number of directed

_III. Analytic results are C(_)nfronted to numerical simulations i ks The probability in question is inversely proportional to

in Sec. IV. We conclude in Sec. V. the total number of directed links and is proportional to the
degrees of the nodes. E@) holds when the right-hand side
is small enough, i.e., at lardé. The probability thab is in

Il. EXTENDING THE DIAGRAMMATIC RULES turn connected to, sag,is however
The perturbation series is defined as in Héf. One cal- _ (kp— Dk,
culates the successive terms in the expansion Prol(b,cla) = ON (4)
N because one link emerging framthe one connectinig to a,
<e(G/3!)Tr(M3)> =3 G [Tr(M3T. ) is already occupied: Onlig,—1 links are potentially “active”.
o 6™n! Pursuing the argument one derives the following rules:

(a) a factor 1{(k)N) is associated with every edge of the
diagram, and

This boils down to the calculation of the expectation value of () 3 factork,!/ (k,—~m,)! is associated with every vertex,
strings likeMa a,Ma,a, **Ma, 0, - A String does not vanish - saya of the diagram. Herek, is the degree of thath graph
if all matrix elements involved are equal to unity. The only node andm, is the degree of the same node regarded as the
problem is that the same element, or its transpose, can appefiagram vertex.
several times in the same String and one needs, therefore, to This was for a particu|ar graph_ Averaging’ one is led to
catalogue all possible string structur@s$. Ref. [9]). This is  replace
done with the help of diagrams.

Each matrix elemenl,;, is represented by a line segment k!l (kg = my)! — (kg!/ (kg —my!), (5)
with endpointsa and b. A string is then represented by a
collection ofn triangles, possibly glued together. In order to in the rules given abovgl3-17.
calculate the perturbation series, one has to consider all pos- We have assumed here that node degrees are uncorrelated,

sible diagrams. The meaning and the construction of diawhich strictly speaking is only true in the limN— c. Even
grams is explained at length in Re#], with the help of in a so-called uncorrelated network some “kinematic” corre-
explicit examples. We will not repeat this discussion hereations appear when one imposes the constraint that there are
referring the reader to the original paper. We wish only ton0 self and multiple connections between nodes and when

insist on the salient steps. k2/N is not always negligibl¢7]. The last condition is easily
(a) All nth-order terms of the series are, of course, pro.SB.tiSﬁed when the degree distribution is defined on a finite
portional to the common factd®"/6™!. support, but may be jeopardized in scale-free networks.

(b) Every diagram is a subgraph which has to be embed- Let us check that for Erdos-Rényi graphs, one gets the
ded in the full graph. Amth-order diagram has, say,ver-  result of Ref.[4]: when the degree distribution is Poissonian
tices andv=<3n. Thesev vertices can be identified with the average of a binomial moment is just a powewof
graph nodes imN!/ (N-v)! ~NY manners. "

(c) The same diagram topology usually represents a num- (kal/ (kg = mg)!) = o™ (6)
ber of distinct strings. The calculation of this number is the
relatively difficult part of the game. But it is universal in the
sense that it does not depend on the degree distribution. The S m.=2¢ )
calculations of Ref[4] were done for the Erdds-Rényi graph, ~ am o
but hold quite generally.

(d) Finally, one has to find the expectation value of thefFyrthermore, in Erdds-Rényi theoti)=a. Hence, the dia-
string corresponding to a given diagram. In Erdijs—Rényigram with ¢ vertices gets a factor
theory, this is simple: If a diagram hésedges, then there are
{-independent adjacency matrix elements in the string and ! I(aN)t = pt. (8)
the expectation value is jugt, wherep is the control pa-
rameter equal tp=a/N when the average degree is set to beThis is exactly what one has in the grand-canonical Erdos-
finite. The case of a general model of uncorrelated graphRényi ensemble and also what one expects in our setup in the
with a given degree distribution requires some extra thoughtargeN limit.

We will use an argument which is not quite original, since it We are now equipped to calculate the contribution of an
has already been employed by other authors in a somewhatbitrary diagram. For example, in the lin@— 0, the aver-
different context(see, for example, Ref§10-12): age number of triangles in a graph, the derivative of the free

The probability that nodea,b are connected is energy with respect t&, equals

Of course, one has
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k(k - 8
O L o oo

a b
because the diagram has three vertices of order two. Hence,
each vertex contributes a fact¢k(k—1))—remember that
vertices are independent—while each link contributes a fac- % ¢
tor 1/(k). The powers ofN cancel, as in the calculation of

Ref. [4] and the only difference is that now instead @f FIG. 1. Additions of a triangle to a diagram, leading to the
appears a ratio of binomial moments of the degree distribumcrease of the number of diagram links by thteg two (b), and
tion p,. one(c).

Higher-order diagrams call for other binomial moments. It
is important to realize that as long as all the momentp,of

i i new triangle is not isolated and its addition increases the
are finite—and thereford independent for large enough net- 9

K si he hi hv of di i theNLé . number of links. Three possibilities, illustrated in Fig. 1, can
work size—the hierarchy of diagrams in theNLexpansion e Because of EL1), increasing the degree of a diagram

s the same as in Re[.4]. In pa.rticul.ar, the same diagrams vertex by Am links produces, at most, an extra divergent
are leading. Summing the leading diagrams, i.e., those Whosrgctor

contribution remains finite wheN— o0, one gets
NAME-L), (12

kk=1)\* o .
T €, (10) When t_he number o_f links is mcrea_sed by thig€ég. 1(a)]
Am=2 in three vertices. The new links yield a factur!
which generalizes Eq36) of Ref. [4]. Higher-order mo- each. Thus, the new global factor is at most
ments(cumulant$ of the T distribution are obtained by dif- NBIE-D-3 = \(©-38/(B-D 13
ferentiating the right-hand side of E(.0) with respect tdG. - ' 13
One finds that the distribution is Poissonian. Similarly, for Figs. 1b) and Xc), one finds that the poten-
The situation changes when the momentsppfare not tially dangerous new factor is at most
necessarily finite. Without much loss of generality, we will
limit our attention to the so-called scale-free graphs, i.e.,

those wherep, falls at largek like a power:p<1/k”. We  regpectively. Foig> 3, these factors tend to zero. We con-

o

N©-28/(8-1) and N(3—B)/(ﬁ—l), (14)

also assume thdk) is finite: 5> 2. clude that the leading diagrams are those considered in Ref.
[4]. The average number of triangles is finite in the liMit
Ill. SCALE-FREE GRAPHS —oo and is given by Eq(10).
Whenp,~ a/k? atk> 1, the moments of order larger than B. Casep=3

B-2 diverge. Actually, at large but finitd, the degree dis-

L . As already recalled, at finithl, the degree distribution is
tribution of a nhondegenerate uncorrelated graph is cut at y I~ 9

cut and the cutoff scales likeN. Of course, the cutoff is not
Knax® N7, y=min(1/2,148 - 1)) (11) sharp, but in calculations it is convenient to replace it by a

o , ) sharp ond<max=c\s’N. The determination of the constanis
(see Ref[7] for a derivation of this result Hence, higher- ot opvious. We make a choice which yields more or less

order moments of the degree distribution increase like SOMgqrect moments of the cut degree distribution: At large
powers ofN and, consequently, the hierarchy of theNL/ gnoyghN

expansion is modified compared to Rgf]. It turns out that

. . ! a
three cases require a separate discussion. (K2) ~ ) InN (15)
A. Casef3>3 and
We will prove that the leading diagrams are the same as a2
those considered in Rd#], i.e., those where the number of (kM ~ a NM22  m> 2 (16)
triangle edges is equal to the number of triangle vertices. m-2

One can easily see that in these diagrams the triangles ¢
overlap, but otherwise do not touch.

The proof is by induction. First, we observe that the dia-
gram of ordem=1 (one triangl¢ is leading and its contribu-

E(‘fhe sharp cutoff upsets the normalization, but the effect is
negligible for largeN). The constant can be roughly esti-
mated using Eq(16):

tion tends to a constant &— . Higher-order diagrams can m- 2<km) Um-2)
be constructed by adding successive triangles. Suppose that
at the nth order, the leading diagrams are those with the c= N : (17)

number of links equal to the number of triangles. What hap-
pens when one adds tlie+1)-st triangle? If it is put on top  Let us calculate the leadinly dependence of an arbitrary
of an existing triangle or if it is isolated, the new diagram diagram with¢ edges ana vertices: One has a global factor
scales withN the same way as its ancestor. In general, thgwe omit logg
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. . be C262/3

It is evident that the increase ¢T) with GT23«GIn?N is
nearly exponential.

(23

C. Case X <3

For <3 all the moments, apart from the first, diverge
like a power ofN. As shown in[7] the cutoff of the degree
distribution scales again likeN. Therefore, an arbitrary dia-
gram’s contribution is proportional to the factor

FIG. 2. Leading diagram fop=3. N~ E U2 my=Arl) = Np/2GA), (24)
Hence, the leading diagrams are those with a maximal num-
Nv— (1 2Za(me=2) (18)  ber of vertices. One can calculate the number of triangfles
] ) . o . ] , in the leading-power approximation. Again, it is sufficient to
since gach link yieldN ,.thev vertices yleIQN and the  consider connected diagrams only. Assuming here, for sim-
binomial moments associated withvertices yield the sum plicity of writing, that (k™=c™NY2m™1-8 and using the
in the exponent. However, this sum can be calculatede,mpinatorial coefficients calculated in Réd], we get:
2;(m-2)=2¢-2v. Hence, the total exponent is zero, only , .
logs remain. _ (M= 1. prep, }G_°5N5/2(3—3) + LG \resp
As explained in Ref[4], calculating the average number 6 (k)3 4(K)® 16 (k)°
of triangles at largeN it is sufficient to consider connected
diagrams only. At each order of perturbation theory, the lead- oo (29

ing connected diagram is the one with the largest number of js obvious that the result is very sensitive to the value.of
vertices of order 2, i.e., the diagram shown in Fig. 2. In theThjs would also be true if we were using a more realistic

nth order, we haven triangles and therefore the number of 3n5at7, viz. the analogue of E@.6). A much more reliable
vertices of order 2 is 12 The central vertex has orden2 prediction is the approximate scaling law:

Each triangle in Fig. 2 can be glued to the central vertex in

three manners. The contribution of théh-order diagram to () =Ty F(GTER). (26)
the free energy is therefogor n>1): In the largeN limit, Eq. (9) reads

n n-2 = 3/2(3-p)
o n%<k13n<k(k— Dy To= (Thozo = N, 7
: andf(x):f(0)=1 is a positive monotonically increasing func-
G"  a™ic? 2N 1g tion. Although we have calculated only the first few terms in
- 2(n-1)n! (8(k)3)" N, 19 the expansior{25), an educated guess is that the rise of the

right-hand side is again nearly exponential.

where we have used the asymptotic result
IV. NUMERICAL RESULTS

(k(k=1)) ~ g InN. (20) In this section, we continue the study of the preceding one
but having recourse to Monte Carlo simulations. As in Ref.
[4], we use the algorithm of Ref7], which has the advan-
tage of generating not only nondegenerate graphs but also
a3 thermal fluctuations. The latter point is important because
—3 In3N. (21) our main goal is to check the stability of the smooth pertur-
48k bative phase. We will also compare the numerical Monte

Summing all the connected diagrams one gets the fre€arlo data to the predictions of the preceding section, ob-
energy. Differentiating the latter with respect@®one finds tained by summing leading diagrams. The agreement will be
the average number of triangles, which can be written in th@nly semiquantitative, because of large finite-size correc-
form tions.

Actually, three types of effects occur at finit First,
a(6Tp)?2 * (bGTf,B)“ a Lo Egs. (3)—«(5) are only approximate, especially when the de-
: ~ 0 gree distribution has a fat tail, as already explained. Second,

Ak =Nl 7,-.20°G nonleading diagrams are negligible, at fix@donly asymp-
(22) totically and it turns out that asymptopia is hard to reach.

Furthermore, the nonleading contribution blows up as one
whereTy=(T)g-o and approaches the transition poi®=G,,, because the transi-

In this limit, Eq. (9) reads

(Ma=0~

(M=To+
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TABLE I. The average number of triangles@t0:(T)g-o from

Monte Carlo simulatior{left) and estimated from degree distribu- 3. I
tions using Eq(9) (right). St i
2
N B=2.5 B=3 B=4 il 1
1024  26.3@) 35.49 11.013) 13.15 4.912) 5.31 |
2048 42.2618) 54.91 15.107) 17.58 5.802) 6.14
4096 67.0836) 84.16 20.2612) 22.93  6.583) 6.85
192 106. 129. 27.2 2 7. 7.
819 06.29) 129.5 8 30.28 3%8) 7.56 FIG. 4. ((T)-To)/T2” versusGTZ® for =3 andN=21° (x),
16384 167.%1.2) 1989 35.5433)38.80 8.019) 8.19 211 (4), 212(V), 213 (A), 214 (O).
N— o0 C_ N3/4 E |n3 N 3_2
48 6 3

zeroth order the graphs are of Erdés-Rényi type. This is ex-

pected to be the generic behavior when the degree distribu-

tion effectively has a finite support. In this respect, the status

tion is an intrinsically nonpertur_bative phenom_enon. The_seof the 8=4 case is uncertain. There is no evidence in the data
two effects are In a sense a nuisance fo_r us, since they JUpl: an increase of5,,: with N. The apparent constancy of
obscure the picture. Third, there are manifestations of the fat . |4 be a finite-size effect. however. On the other hand

. Q- . . . . t 1 . ’
tail p~k7in the node degree distribution that persist at anit (I); very plausible that hubs, i.e., nodes with largest degree,

N and are, in faCF, increasingly important a}sgrows UP-  pehave as seeds of Strauss cligues, preventing the growth of

They are responsible for the singular beh_awo_r of scale-fre?ne barrier separating the smooth phase from the crumpled

netwo_rks and are there_fore_ of much physical Interest. one. In order to settle this question, one would have to simu-
As in our earlier publications we assume, for deﬂmtenessl,ate enormous networks, beyond reach with present means

that the degree distribution has the fofof. Ref.[16]) In Fig. 4, we pIot((T)—TO)/T§’3 versusGTéB, as sug-

gested by Eq(22), for =3 andN ranging again from ¥ to

214 The data scale reasonably well, especially at &',

It appears that, very roughly

r'(28-3I'k+B-3)
T(B-2T(k+28-3)

P=(8-1) ckP(k>1) (28
Similar results were obtained with other choicesgf

In Table | is given the average number of triangle<Gat
=0, viz. (T )g=0, measured directly in Monte Carlo simula-
tion (the left column and estimated using E) (the right

column) from the degree distribution generated in the samerhe constant can be estimated from E@17), using the
simulation for3=2.5, 3, and 4, respectively. The agreementopservedi.e., cuj degree distributions. A reliable estimate is
improves as\ increases and worsens, as expected, with depptained from low-order moments and using rather laxge
creasingl and growing the fat tail. Notice, thdT)c=o in-  data; one finds ranging from 0.9 to 1.2. Setting=0.9, one
creases witiN also for g=4, although it is expected to be gets from Eq(22) the curve shown in Fig. 4.
finite in the limit N—o: The second moment of the degree  |n Fig. 5, we plot(T)/T, versusGT2?, as suggested by
distribution is still rising significantly in the explored range gq. (25), for 8=2.5 andN ranging from 2° to 214 One
of N. . observes the expected scaling at small valueSBf*, but at

In Fig. 3, we ploKT)/T, versusG for =4 andN ranging  |arger values finite-size effects become gradually more and

from 2'% to 2! The asymptotic expectation &) is also  more important. It appears that, very roughly
drawn. The data scale and follow the curve @pat small

Gour= (29)

2/3

1.5
—— «In"2N.
To

G. The characteristic fan shows up as one moves toward the 23
transition poiniG=G,,. Notice, that largeskl data tend to be Gout= 2R N (30
closer to the curve, as expected. At this point, we are unable 0
to tell how G,,; behaves. We recall th&,>In N when in
E:
25t ] L 4 I;
[:0 £z B=25 I 4
e a2t B=4 ;g: | 3+ . !,u sz @
'!i 2t -n:":':A‘O
1.5 "!gmw E iﬁii.:e:;.w
[
! - NI
, , , , 005 1 15 Z_,.23
0 01 02 03 04 g 05 GT;

FIG. 3. (T)/T, versusG for B=4 and N=210(x), 211 (+),

FIG. 5. (T)/T, versus GT2® for B=2.5 and N=21°(x),
212(V), 28.(n), 24 (O).

211(+), 212(V), 283 (A7), 24 (O).

026106-5



BURDA, JURKIEWICZ, AND KRZYWICKI PHYSICAL REVIEW E 70, 026106(2004)

in such a behavior, which is also encountered in more con-
ventional matrix models. It just means th@t is not the
physical coupling and that the latter is rati@N°, again
modulo logs. When the physical coupling is used, the smooth
phase lives in a finite coupling interval and the average num-
ber of triangles is enhanced compared to the unperturbed
expectation. However the stability of this phase is an open
1000 problem. In Ref[4], we found that nonperturbative phenom-
ena are manifestly negligible almost in the whole smooth
FIG. 6. The degree distributioRy at N=2' and for 8=2.5.  phase: Numerical data were remarkably close to perturbative
Dashed line is forG=0, solid line for G=0.08 (just before the  predictions. Here, we cannot claim the same, partly because
transition to the crumpled phgserhe almost straight line corre- \ye are unable to disentangle finite-size and nonperturbative
sponds to the asymptotic shapeRy i.e., top. effects.
At finite G, scale-free networks are unstable férarge
In Fig. 6, we plot the degree distribution Bt=2'* and  enough. The physical significance of this singular behavior is
B=2.5, forG=0 and 0.08(just before the transition to the not fully clear yet. In our simulations, the thermal motion
crumpled phase to show that the introduction of the inter- consists of network rewirings. Rewiring is an ergodic move:
action Hamiltonian does not spoil the scale free property. IrEvery two states can be transformed one into another by
Fig. 7, we show the variation witk of the clustering param- making a finite number of rewirings. In particular, any other

eter algorithmic move could be regarded as made up of rewir-
ings. However, with a different algorithm the thermalization
C, = 2Ty (31) time of the system would in general be different, in particular

k™ kik-1)’ it could explode with increasinly. Thus, it is not excluded,

although does not seem very likely, that the instability is an
whereT, is the average number of triangles touching a ver-algorithm artifact.
tex with degreek. One observes that the decrease of the Very many natural networks are scale free, with the expo-
clustering parameter is much slower than observed in IntementS below 3. At least some of them seem fairly stable. In
net, for example, wher€, =k °75[17). some cases, there are selection rules constraining the rewir-
ings. But this is not the most interesting possibility. How do
the natural networks compare to the graphs of our model?
We see one significant difference: In our graphs, the cluster-

This paper is a direct continuation of R¢4], where we  ing coefficient is weakly correlated with node degrees, while
have studied perturbed random Erdés-Rényi graphs. In thi@ natural networks it tends to decrease like some power of
present paper, we show that the results of Rfcontinue to ~ the latter. The behavior of our graphs is easy to understand as
hold when an ensemble @&lmos) arbitrary uncorrelated follows: The system forms triangles at random and therefore
graphs is perturbed by the same interaction, favoring the fortends to attach many triangles to hubs, which apparently be-
mation of triangles. There is, however, a notable exception t60me seeds of Strauss cliques. Natural networks seem to
this generic behavior: The so-called scale-free graphs beha@void this disease by suppressing the formation of triangles
differently, especially when the degree distribution has a diat hubs. It is plausible that a specific hierarchical organiza-
verging variance. tion screens natural networks from the instability. In such a

At finite N, the smooth phase exists only when the inter-Scenario, a triangle generating term with a finite couplig
action couplingG is smaller than some thresholBl<G,, ~ could after all be present in the Hamiltonian. For the mo-
Generically,G,, scales like IfN, but for scale-free networks ment, this is just a speculation.
with 2< <3 it scales likeNA-3 (modulo logg. Hence, the ~ Our paper is not a phenomenological one. We are not yet
support of the smooth regime does not expand but shrinks tat the stage of constructing a model to be compared to the
zero in the thermodynamic limit. There is nothing dramaticdata. We focus on the theoretical problem of the stability of
networks with respect to motif generating terms in the
Hamiltonian. However, the paper is not quite devoid of phe-

V. SUMMARY AND CONCLUSION

C
0'0(1;6 | nomenological implications: Our method allows us not only
to calculate averages of physical quantities characterizing an
individual network, but also fluctuations of those quantities
0.004 . in the ensemble, giving us an insight into the problem of
typicality of networks. As far as we know, the magnitude of
fluctuations of motifs has never been estimated for graphs
0.002+ g . . . L. .
. . . . with an arbitrary given degree distribution.
0 100 200 300 4 400
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