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This paper is a direct continuation of an earlier work, where we studied Erdös-Rényi random graphs
perturbed by an interaction Hamiltonian favoring the formation of short cycles. Here, we generalize these
results. We keep the same interaction Hamiltonian but let it act on general graphs with uncorrelated nodes and
an arbitrary given degree distribution. It is shown that the results obtained for Erdös-Rényi graphs are generic,
at the qualitative level. However, scale-free graphs are an exception to this general rule and exhibit a singular
behavior, studied thoroughly in this paper, both analytically and numerically.
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I. INTRODUCTION

The best understood random graphs are those with uncor-
related nodes and a local tree structure. It was natural to
develop the statistical mechanics of random networks start-
ing with this highly idealized picture, as it is natural to begin
explaining the properties of gases starting with the ideal
ones. However, short loops show up in most real networks
relatively frequently and it is evident that current models
should be upgraded to capture this common trait(the present
state of art in network research is excellently reviewed in
Refs. [1–3]). A possible strategy consists in adding to the
Hamiltonian a term favoring the appearance of specific mo-
tifs. This strategy was adopted in our recent publication[4],
where Erdös-Rényi graphs were perturbed by adding to the
action a term proportional to the number of triangles[5]. The
purpose of the present paper is to outline a possible gener-
alization of the discussion of Ref.[4] to the case where in
zeroth order the graphs belong to the statistical ensemble of
simple (i.e., nondegenerate) graphs with uncorrelated nodes
and anarbitrary degree distributionpk.

The partition function of the perturbed model is written in
the form

Z = o
M

d„TrsM2d − 2L…eSsMdp
j=1

N

spkj
kj!d = Z0keSsMdl s1d

whereN and L are the number of nodes and links, respec-
tively, the sum is over adjacency matrices M,kj is the degree
of the j th node satisfying TrsM2d=o jkj, andSsMd is the per-
turbing Hamiltonian. SettingSsMd=0, one obtains a standard
model of networks with uncorrelated nodes and the degree
distribution pk (provided the relationokkpk/okpk=2L /N
holds, see for example Refs[6,7]). In the second line, we
denote byk¯l the average taken in the unperturbed en-
semble and thereforeZ0 is, obviously, the partition function
of the unperturbed model, in our context an irrelevant overall
factor (it can be calculated analytically in the largeN limit,
see, e.g.,[6], but we do not need this result here).

One can, of course, go over from Eq.(1) to a grand-
canonical ensemble, with fluctuatingL, multiplying Eq. (1)
by an appropriateL-dependent weight and summing overL.

In the Erdös-Rényi theory, there is a very natural and simple
recipe for the weight. Hence, in Ref.[4], we were grand
canonical. Here, we find it more elegant to keep the number
of links fixed. Notice, that we are interested in the largeN
limit where, for any reasonable choice of the weight,L stays
close to its average value as a consequence of the constraint
L=1/2o jkj and of the central limit theorem.

As in Ref. [4], we set for definitenessSsMd
=G/3! TrsM3d. Expanding the exponential in Eq.(1), we ob-
tain a perturbative series representing the partition function.
This perturbative representation was thoroughly studied in
Ref. [4] and the analytic arguments were completed by nu-
merical simulations. Let us recall the salient conclusions of
this study.

We have introduced a diagrammatic representation of pos-
sible contributions to the perturbative expansion, reminiscent
of Feynman diagrams used in field theory. Each diagram is a
specific subgraph of the full random graph. We have shown
that the number of contributing diagrams grows factorially
with the order of the perturbation theory.

As is well known, such a factorial growth of the number
of diagrams signals a breakdown of the perturbation theory.
Indeed, our numerical simulations indicate the presence of a
transition from a smooth perturbative regime to a crumpled
phase, where almost all nodes form a complete clique[8].
The transition pointGoutsNd scales like lnN. The two phases
are separated by a “barrier” which becomes impenetrable
whenN→`.

Remarkably enough, it is possible to sum up the leading
diagrams, i.e., those whose contribution survives in the limit
N→`. Thus, for example, we have been able to derive a
closed analytic expression for the average number of tri-
angles. It turns out, that at large enoughN this analytic for-
mula is a very good approximation in the almost whole re-
gion G,GoutsNd. SettingG=G0 ln N,GoutsNd, one obtains
a network model with a nontrivially behaving clustering co-
efficient C~NG0−1. This clustering coefficient is never con-
stant, it falls to zero asN→`, but this fall can be made fairly
slow by a proper choice ofG0.

The results summarized above are the starting point of the
present paper, which is a direct continuation of Ref.[4]. In
Sec. II, we extend our diagrammatic rules to general uncor-
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related graphs with a given degree distribution. We also
show that the results of Ref.[4] continue to hold, only
slightly modified, in this generalized setup. The so-called
scale-free graphs are the only exception to the generic be-
havior and require a separate discussion, presented in Sec.
III. Analytic results are confronted to numerical simulations
in Sec. IV. We conclude in Sec. V.

II. EXTENDING THE DIAGRAMMATIC RULES

The perturbation series is defined as in Ref.[4]. One cal-
culates the successive terms in the expansion

kesG/3!dTrsM3dl = o
n

Gn

6nn!
kfTrsM3dgnl. s2d

This boils down to the calculation of the expectation value of
strings likeMa1a2

Ma2a3
¯Ma3n−1a3n

. A string does not vanish
if all matrix elements involved are equal to unity. The only
problem is that the same element, or its transpose, can appear
several times in the same string and one needs, therefore, to
catalogue all possible string structures(cf. Ref. [9]). This is
done with the help of diagrams.

Each matrix elementMab is represented by a line segment
with endpointsa and b. A string is then represented by a
collection ofn triangles, possibly glued together. In order to
calculate the perturbation series, one has to consider all pos-
sible diagrams. The meaning and the construction of dia-
grams is explained at length in Ref.[4], with the help of
explicit examples. We will not repeat this discussion here,
referring the reader to the original paper. We wish only to
insist on the salient steps.

(a) All nth-order terms of the series are, of course, pro-
portional to the common factorGn/6nn!.

(b) Every diagram is a subgraph which has to be embed-
ded in the full graph. Annth-order diagram has, say,v ver-
tices andvø3n. Thesev vertices can be identified with
graph nodes inN! / sN−vd! ,Nv manners.

(c) The same diagram topology usually represents a num-
ber of distinct strings. The calculation of this number is the
relatively difficult part of the game. But it is universal in the
sense that it does not depend on the degree distribution. The
calculations of Ref.[4] were done for the Erdös-Rényi graph,
but hold quite generally.

(d) Finally, one has to find the expectation value of the
string corresponding to a given diagram. In Erdös-Rényi
theory, this is simple: If a diagram has, edges, then there are
,-independent adjacency matrix elements in the string and
the expectation value is justp,, wherep is the control pa-
rameter equal top=a /N when the average degree is set to be
finite. The case of a general model of uncorrelated graphs
with a given degree distribution requires some extra thought.
We will use an argument which is not quite original, since it
has already been employed by other authors in a somewhat
different context(see, for example, Refs.[10–12]):

The probability that nodesa,b are connected is

Probsa,bd =
kakb

kklN
, s3d

where ka skbd is the degree ofath sbthd node and kkl
=okkpk/okpk. Notice thatkklN equals the number of directed
links. The probability in question is inversely proportional to
the total number of directed links and is proportional to the
degrees of the nodes. Eq.(3) holds when the right-hand side
is small enough, i.e., at largeN. The probability thatb is in
turn connected to, say,c is however

Probsb,cuad =
skb − 1dkc

kklN
, s4d

because one link emerging fromb, the one connectingb to a,
is already occupied: Onlykb−1 links are potentially “active”.
Pursuing the argument one derives the following rules:

(a) a factor 1/skklNd is associated with every edge of the
diagram, and

(b) a factorka! / ska−mad! is associated with every vertex,
saya, of the diagram. Here,ka is the degree of theath graph
node andma is the degree of the same node regarded as the
diagram vertex.

This was for a particular graph. Averaging, one is led to
replace

ka!/ska − mad! → kka!/ska − mad!l, s5d

in the rules given above[13–15].
We have assumed here that node degrees are uncorrelated,

which strictly speaking is only true in the limitN→`. Even
in a so-called uncorrelated network some “kinematic” corre-
lations appear when one imposes the constraint that there are
no self and multiple connections between nodes and when
k2/N is not always negligible[7]. The last condition is easily
satisfied when the degree distribution is defined on a finite
support, but may be jeopardized in scale-free networks.

Let us check that for Erdös-Rényi graphs, one gets the
result of Ref.[4]: when the degree distribution is Poissonian
the average of a binomial moment is just a power ofa:

kka!/ska − mad!l = ama. s6d

Of course, one has

o
a

ma = 2,. s7d

Furthermore, in Erdös-Rényi theorykkl=a. Hence, the dia-
gram with, vertices gets a factor

a2,/saNd, = p,. s8d

This is exactly what one has in the grand-canonical Erdös-
Rényi ensemble and also what one expects in our setup in the
largeN limit.

We are now equipped to calculate the contribution of an
arbitrary diagram. For example, in the limitG→0, the aver-
age number of triangles in a graph, the derivative of the free
energy with respect toG, equals
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kTlG=0 =
1

6
S kksk − 1dl

kkl
D3

, s9d

because the diagram has three vertices of order two. Hence,
each vertex contributes a factorkksk−1dl—remember that
vertices are independent—while each link contributes a fac-
tor 1/kkl. The powers ofN cancel, as in the calculation of
Ref. [4] and the only difference is that now instead ofa
appears a ratio of binomial moments of the degree distribu-
tion pk.

Higher-order diagrams call for other binomial moments. It
is important to realize that as long as all the moments ofpk
are finite—and thereforeN independent for large enough net-
work size—the hierarchy of diagrams in the 1/N expansion
is the same as in Ref.[4]. In particular, the same diagrams
are leading. Summing the leading diagrams, i.e., those whose
contribution remains finite whenN→`, one gets

kTl =
1

6
S kksk − 1dl

kkl
D3

eG, s10d

which generalizes Eq.(36) of Ref. [4]. Higher-order mo-
ments(cumulants) of the T distribution are obtained by dif-
ferentiating the right-hand side of Eq.(10) with respect toG.
One finds that the distribution is Poissonian.

The situation changes when the moments ofpk are not
necessarily finite. Without much loss of generality, we will
limit our attention to the so-called scale-free graphs, i.e.,
those wherepk falls at largek like a power:pk~1/kb. We
also assume thatkkl is finite: b.2.

III. SCALE-FREE GRAPHS

Whenpk,a/kb at k@1, the moments of order larger than
b−2 diverge. Actually, at large but finiteN, the degree dis-
tribution of a nondegenerate uncorrelated graph is cut at

kmax~ Ng, g = min„1/2,1/sb − 1d… s11d

(see Ref.[7] for a derivation of this result). Hence, higher-
order moments of the degree distribution increase like some
powers of N and, consequently, the hierarchy of the 1/N
expansion is modified compared to Ref.[4]. It turns out that
three cases require a separate discussion.

A. Caseb.3

We will prove that the leading diagrams are the same as
those considered in Ref.[4], i.e., those where the number of
triangle edges is equal to the number of triangle vertices.
One can easily see that in these diagrams the triangles can
overlap, but otherwise do not touch.

The proof is by induction. First, we observe that the dia-
gram of ordern=1 (one triangle) is leading and its contribu-
tion tends to a constant asN→`. Higher-order diagrams can
be constructed by adding successive triangles. Suppose that
at the nth order, the leading diagrams are those with the
number of links equal to the number of triangles. What hap-
pens when one adds thesn+1d-st triangle? If it is put on top
of an existing triangle or if it is isolated, the new diagram
scales withN the same way as its ancestor. In general, the

new triangle is not isolated and its addition increases the
number of links. Three possibilities, illustrated in Fig. 1, can
arise. Because of Eq.(11), increasing the degree of a diagram
vertex by Dm links produces, at most, an extra divergent
factor

NDm/sb−1d. s12d

When the number of links is increased by three[Fig. 1(a)]
Dm=2 in three vertices. The new links yield a factorN−1

each. Thus, the new global factor is at most

N6/sb−1d−3 = Ns9−3bd/sb−1d. s13d

Similarly, for Figs. 1(b) and 1(c), one finds that the poten-
tially dangerous new factor is at most

Ns6−2bd/sb−1d and Ns3−bd/sb−1d, s14d

respectively. Forb.3, these factors tend to zero. We con-
clude that the leading diagrams are those considered in Ref.
[4]. The average number of triangles is finite in the limitN
→` and is given by Eq.(10).

B. Caseb=3

As already recalled, at finiteN, the degree distribution is
cut and the cutoff scales likeÎN. Of course, the cutoff is not
sharp, but in calculations it is convenient to replace it by a
sharp onekmax=cÎN. The determination of the constantc is
not obvious. We make a choice which yields more or less
correct moments of the cut degree distribution: At large
enoughN

kk2l <
a

2
ln N s15d

and

kkml <
acm−2

m− 2
Nsm−2d/2, m. 2 s16d

(the sharp cutoff upsets the normalization, but the effect is
negligible for largeN). The constantc can be roughly esti-
mated using Eq.(16):

c <
Sm− 2

a
kkmlD1/sm−2d

ÎN
. s17d

Let us calculate the leadingN dependence of an arbitrary
diagram with, edges andv vertices: One has a global factor
(we omit logs)

FIG. 1. Additions of a triangle to a diagram, leading to the
increase of the number of diagram links by three(a), two (b), and
one (c).
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Nv−,+1/2Sasma−2d, s18d

since each link yieldsN−1, the v vertices yieldNv and the
binomial moments associated withv vertices yield the sum
in the exponent. However, this sum can be calculated:
o jsmj −2d=2,−2v. Hence, the total exponent is zero, only
logs remain.

As explained in Ref.[4], calculating the average number
of triangles at largeN it is sufficient to consider connected
diagrams only. At each order of perturbation theory, the lead-
ing connected diagram is the one with the largest number of
vertices of order 2, i.e., the diagram shown in Fig. 2. In the
nth order, we haven triangles and therefore the number of
vertices of order 2 is 2n. The central vertex has order 2n.
Each triangle in Fig. 2 can be glued to the central vertex in
three manners. The contribution of thenth-order diagram to
the free energy is therefore(for n.1):

Gn

6nn!
3nac2n−2

2n − 2

1

kkl3nkksk − 1dl2n

,
Gn

2sn − 1dn!

a2n+1c2n−2

s8kkl3dn ln2n N, s19d

where we have used the asymptotic result

kksk − 1dl ,
a

2
ln N. s20d

In this limit, Eq. (9) reads

kTlG=0 ,
a3

48kkl3 ln3 N. s21d

Summing all the connected diagrams one gets the free
energy. Differentiating the latter with respect toG one finds
the average number of triangles, which can be written in the
form

kTl = T0 +
as6T0d2/3

4kkl o
n=1

`
sbGT0

2/3dn

nn!
,

T0→`

a

2c2G
ebGT0

2/3

s22d

whereT0;kTlG=0 and

b =
c262/3

2kkl
. s23d

It is evident that the increase ofkTl with GT0
2/3~G ln2 N is

nearly exponential.

C. Case 2,b,3

For b,3 all the moments, apart from the first, diverge
like a power ofN. As shown in[7] the cutoff of the degree
distribution scales again likeÎN. Therefore, an arbitrary dia-
gram’s contribution is proportional to the factor

Nv−,+1/2S jsmj−b+1d = Nv/2s3−bd. s24d

Hence, the leading diagrams are those with a maximal num-
ber of vertices. One can calculate the number of triangleskTl
in the leading-power approximation. Again, it is sufficient to
consider connected diagrams only. Assuming here, for sim-
plicity of writing, that kkml=cmN1/2sm+1−bd and using the
combinatorial coefficients calculated in Ref.[4], we get:

kTl =
1

6

c3

kkl3N3/2s3−bd +
1

4

Gc5

kkl6N5/2s3−bd +
7

16

G2c7

kkl9 N7/2s3−bd

+ . . . . s25d

It is obvious that the result is very sensitive to the value ofc.
This would also be true if we were using a more realistic
ansatz, viz. the analogue of Eq.(16). A much more reliable
prediction is the approximate scaling law:

kTl = T0 fsGT0
2/3d. s26d

In the largeN limit, Eq. (9) reads

T0 ; kT lG=0 ~ N3/2s3−bd, s27d

and fsxd : fs0d=1 is a positive monotonically increasing func-
tion. Although we have calculated only the first few terms in
the expansion(25), an educated guess is that the rise of the
right-hand side is again nearly exponential.

IV. NUMERICAL RESULTS

In this section, we continue the study of the preceding one
but having recourse to Monte Carlo simulations. As in Ref.
[4], we use the algorithm of Ref.[7], which has the advan-
tage of generating not only nondegenerate graphs but also
thermal fluctuations. The latter point is important because
our main goal is to check the stability of the smooth pertur-
bative phase. We will also compare the numerical Monte
Carlo data to the predictions of the preceding section, ob-
tained by summing leading diagrams. The agreement will be
only semiquantitative, because of large finite-size correc-
tions.

Actually, three types of effects occur at finiteN: First,
Eqs. (3)–(5) are only approximate, especially when the de-
gree distribution has a fat tail, as already explained. Second,
nonleading diagrams are negligible, at fixedG, only asymp-
totically and it turns out that asymptopia is hard to reach.
Furthermore, the nonleading contribution blows up as one
approaches the transition pointG=Gout, because the transi-

FIG. 2. Leading diagram forb=3.
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tion is an intrinsically nonperturbative phenomenon. These
two effects are in a sense a nuisance for us, since they just
obscure the picture. Third, there are manifestations of the fat
tail pk,k−b in the node degree distribution that persist at any
N and are, in fact, increasingly important asN grows up.
They are responsible for the singular behavior of scale-free
networks and are therefore of much physical interest.

As in our earlier publications we assume, for definiteness,
that the degree distribution has the form(cf. Ref. [16])

pk = sb − 1d
Gs2b − 3dGsk + b − 3d
Gsb − 2dGsk + 2b − 3d

~ k−bsk @ 1d s28d

Similar results were obtained with other choices ofpk.
In Table I is given the average number of triangles atG

=0, viz. kT lG=0, measured directly in Monte Carlo simula-
tion (the left column) and estimated using Eq.(9) (the right
column) from the degree distribution generated in the same
simulation forb=2.5, 3, and 4, respectively. The agreement
improves asN increases and worsens, as expected, with de-
creasingb and growing the fat tail. Notice, thatkTlG=0 in-
creases withN also for b=4, although it is expected to be
finite in the limit N→`: The second moment of the degree
distribution is still rising significantly in the explored range
of N.

In Fig. 3, we plotkTl /T0 versusG for b=4 andN ranging
from 210 to 214. The asymptotic expectation expsGd is also
drawn. The data scale and follow the curve expsGd at small
G. The characteristic fan shows up as one moves toward the
transition pointG=Gout. Notice, that largestN data tend to be
closer to the curve, as expected. At this point, we are unable
to tell how Gout behaves. We recall thatGout~ ln N when in

zeroth order the graphs are of Erdös-Rényi type. This is ex-
pected to be the generic behavior when the degree distribu-
tion effectively has a finite support. In this respect, the status
of theb=4 case is uncertain. There is no evidence in the data
for an increase ofGout with N. The apparent constancy of
Gout could be a finite-size effect, however. On the other hand,
it is very plausible that hubs, i.e., nodes with largest degree,
behave as seeds of Strauss cliques, preventing the growth of
the barrier separating the smooth phase from the crumpled
one. In order to settle this question, one would have to simu-
late enormous networks, beyond reach with present means.

In Fig. 4, we plot skTl−T0d /T0
2/3 versusGT0

2/3, as sug-
gested by Eq.(22), for b=3 andN ranging again from 210 to
214. The data scale reasonably well, especially at lowGT0

2/3.
It appears that, very roughly

Gout <
1.5

T0
2/3 ~ ln−2 N. s29d

The constantc can be estimated from Eq.(17), using the
observed(i.e., cut) degree distributions. A reliable estimate is
obtained from low-order moments and using rather largeN
data; one findsc ranging from 0.9 to 1.2. Settingc=0.9, one
gets from Eq.(22) the curve shown in Fig. 4.

In Fig. 5, we plotkTl /T0 versusGT0
2/3, as suggested by

Eq. (25), for b=2.5 andN ranging from 210 to 214. One
observes the expected scaling at small values ofGT0

2/3, but at
larger values finite-size effects become gradually more and
more important. It appears that, very roughly

Gout <
2.3

T0
2/3 ~ N−1/2 s30d

FIG. 3. kTl /T0 versus G for b=4 and N=210 s3d, 211 s+d,
212 s,d, 213 snd, 214 ssd.

TABLE I. The average number of triangles atG=0:kTlG=0 from
Monte Carlo simulation(left) and estimated from degree distribu-
tions using Eq.(9) (right).

N b=2.5 b=3 b=4

1024 26.36(9) 35.49 11.01(3) 13.15 4.91(2) 5.31

2048 42.26(18) 54.91 15.10(7) 17.58 5.80(2) 6.14

4096 67.05(36) 84.16 20.26(12) 22.93 6.58(3) 6.85

8192 106.2(9) 129.5 27.22(28) 30.28 7.33(3) 7.56

16384 167.0(1.2) 198.9 35.54(33) 38.80 8.01(9) 8.19

N→` c3

48
N3/4 1

6
ln3 N

32

3

FIG. 4. skTl−T0d /T0
2/3 versusGT0

2/3 for b=3 andN=210 s3d,
211 s+d, 212 s,d, 213 snd, 214 ssd.

FIG. 5. kTl /T0 versus GT0
2/3 for b=2.5 and N=210 s3d,

211 s+d, 212 s,d, 213 snd, 214 ssd.
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In Fig. 6, we plot the degree distribution atN=214 and
b=2.5, for G=0 and 0.08(just before the transition to the
crumpled phase), to show that the introduction of the inter-
action Hamiltonian does not spoil the scale free property. In
Fig. 7, we show the variation withk of the clustering param-
eter

Ck =
2Tk

ksk − 1d
, s31d

whereTk is the average number of triangles touching a ver-
tex with degreek. One observes that the decrease of the
clustering parameter is much slower than observed in Inter-
net, for example, whereCk~k−0.75 [17].

V. SUMMARY AND CONCLUSION

This paper is a direct continuation of Ref.[4], where we
have studied perturbed random Erdös-Rényi graphs. In the
present paper, we show that the results of Ref.[4] continue to
hold when an ensemble of(almost) arbitrary uncorrelated
graphs is perturbed by the same interaction, favoring the for-
mation of triangles. There is, however, a notable exception to
this generic behavior: The so-called scale-free graphs behave
differently, especially when the degree distribution has a di-
verging variance.

At finite N, the smooth phase exists only when the inter-
action couplingG is smaller than some thresholdG,Gout.
Generically,Gout scales like lnN, but for scale-free networks
with 2,b,3 it scales likeNb−3 (modulo logs). Hence, the
support of the smooth regime does not expand but shrinks to
zero in the thermodynamic limit. There is nothing dramatic

in such a behavior, which is also encountered in more con-
ventional matrix models. It just means thatG is not the
physical coupling and that the latter is ratherGN3−b, again
modulo logs. When the physical coupling is used, the smooth
phase lives in a finite coupling interval and the average num-
ber of triangles is enhanced compared to the unperturbed
expectation. However the stability of this phase is an open
problem. In Ref.[4], we found that nonperturbative phenom-
ena are manifestly negligible almost in the whole smooth
phase: Numerical data were remarkably close to perturbative
predictions. Here, we cannot claim the same, partly because
we are unable to disentangle finite-size and nonperturbative
effects.

At finite G, scale-free networks are unstable forN large
enough. The physical significance of this singular behavior is
not fully clear yet. In our simulations, the thermal motion
consists of network rewirings. Rewiring is an ergodic move:
Every two states can be transformed one into another by
making a finite number of rewirings. In particular, any other
algorithmic move could be regarded as made up of rewir-
ings. However, with a different algorithm the thermalization
time of the system would in general be different, in particular
it could explode with increasingN. Thus, it is not excluded,
although does not seem very likely, that the instability is an
algorithm artifact.

Very many natural networks are scale free, with the expo-
nentb below 3. At least some of them seem fairly stable. In
some cases, there are selection rules constraining the rewir-
ings. But this is not the most interesting possibility. How do
the natural networks compare to the graphs of our model?
We see one significant difference: In our graphs, the cluster-
ing coefficient is weakly correlated with node degrees, while
in natural networks it tends to decrease like some power of
the latter. The behavior of our graphs is easy to understand as
follows: The system forms triangles at random and therefore
tends to attach many triangles to hubs, which apparently be-
come seeds of Strauss cliques. Natural networks seem to
avoid this disease by suppressing the formation of triangles
at hubs. It is plausible that a specific hierarchical organiza-
tion screens natural networks from the instability. In such a
scenario, a triangle generating term with a finite couplingG
could after all be present in the Hamiltonian. For the mo-
ment, this is just a speculation.

Our paper is not a phenomenological one. We are not yet
at the stage of constructing a model to be compared to the
data. We focus on the theoretical problem of the stability of
networks with respect to motif generating terms in the
Hamiltonian. However, the paper is not quite devoid of phe-
nomenological implications: Our method allows us not only
to calculate averages of physical quantities characterizing an
individual network, but also fluctuations of those quantities
in the ensemble, giving us an insight into the problem of
typicality of networks. As far as we know, the magnitude of
fluctuations of motifs has never been estimated for graphs
with an arbitrary given degree distribution.
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